HEP Computing in the

Future

Richard P. Mount

SLAC

June 6, 2013

Summary: Follow the Money

- How Do We Spend Our Money?
- Classical Economics or What? (aka Distorting Factors)
- Unit Cost History of HEP Computing
- Murky Crystal Ball Gazing on Technology
- Murkier Crystal Ball Gazing on HEP Computing

How do we spend our money?

- Hard numbers:
 - » US-ATLAS M&O spending on software and computing
- Educated guesses
 - » US spending on networking serving ATLAS
 - » US university and lab support for ATLAS computing
 - » US scientist effort on ATLAS software and computing operations
- Wild extrapolation
 - » Scale up to all US HEP and,
 - » Worldwide HEP

US-Atlas Software and Computing M&O \$18.5M in 2015

US-Atlas Software and Computing Total Cost Estimate \$27.0M in 2015

Worldwide HEP Software and Computing Total Cost Guess \$200M in 2015

Hardware Costs (BNL T1 average 2013-2017)

Hardware-Related Costs (BNL T1 average 2013-2017)

Classical Economics or What?

- Strong focus on CPU as the implied cost driver and figure of merit
- Political/funding requirement for a distributed system
 - » A centralized system might divide unit costs by a factor 2
 - » But it might divide funding by a factor 4
- Some real benefits of the distributed system
 - » Involves scientists worldwide and distributes expertise
 - » Eases access to major opportunistic resources
 - » Maybe it doesn't really cost us all that much

Classical Economics or What?

- Effort is "free" (up to a rigid limit) in some national systems
- Much of the network is "free"
- Space/Power/Cooling (even sysadmins) are "free" at many centers
- Tape is on its way out (just as it was for the last 15 years), so don't make it part of any serious planning (This is the prevailing wisdom)

Unit Cost History of HEP Computing

- Simple filter stuff that I have bought (with some network numbers from Harvey Newman)
- Added Titan and Mira

Murky Crystal Ball – Rotating Disks

- Market is shrinking
 - » Consumer market is shrinking rapidly
 - » Enterprise market is growing
 - » Cheap, low performance, reliable (tape-killer) disks are disappearing
- Disk technology has a long way to go if likely market volumes justify the investments
- Slower evolution of TB/\$ doubling every 3 years?

Murky Crystal Ball – Tape

- Has been at death's door for more than a decade
- Everybody hates it, (strange technology, people-intensive, maintenance ransom, ...) but
- Everybody needs archival storage
- The threat from disk is receding
- Make tape an integral part of the planning

Murky Crystal Ball – Solid State Storage

- High market demand (and limited fabrication capacity)
 - » Current prices are high relative to "equilibrium" market
 - » Costs about 10 times rotating disk
 - » May go down to 2 to 3 times over the next 5 to 10 years
 - » Not clear how strongly the market will drive the introduction of "better" technologies than flash

Murky Crystal Ball – CPU

- We hit the GHz wall five years ago
 - » Didn't really hurt us much
- We may not quite hit the feature size wall (too few atoms in a feature) in the next decade, but it is coming
- I, personally, have been in painful collision with the power consumption wall several times in the last decade
- The "doubling every 1.3 years" growth has stopped. But we will continue to get more transistors per \$.
- The transistors will be slower, but will do more work per Watt
- CPU units/\$ may grow a little faster than disk (IF we can use the transistors).

Murky Crystal Ball – WAN

- Not quite an open market regulations, cartels.
- e.g. No transatlantic cables being pulled
- Guess that bits/s per \$ will continue to grow on average to keep pace with average storage+CPU costs

- Distributed Computing will persist
 - » Funding politics will not change
 - » Our distributed approach eases the use of opportunistic or payas-you-go resources that don't belong to us. (for example HPC)
 - » Need to focus on lowering the people cost
- Costs will continue to be dominated by people
- Need to focus on overall cost optimization
 (Some money sources may appear to be CPU obsessed –
 don't let that distract us)

- Engineering software for future architectures
 - » No clear picture of how the market will drive architectures, but
 - » Event-level parallelism is unlikely to be enough
 - » Need more:
 - HEP software effort (significant cost)
 - Collaboration with CS and other sciences
 - Coordination
 - » Looks like an ongoing need more than a project.

Storage

- » Multi layer (solid state/disk/tape and successors)
- » Cost optimized combination
- » Optimization will depend critically on application-sensitive cache-management
- » We may have to provide much of the software ourselves

- Crystal ball is dark on
 - » How long will C++/Python dominate?
 - But we must use software technologies that make our grad students employable.
 - » How do we maintain high-quality software effort in the face of new physics data?
 - » Are systems of the complexity of ATLAS Distributed Computing sustainable long-term?

Summary

"Prediction is very difficult, especially about the future"

(Attributed to nearly everybody from Bohr to Berra)

